Efficient ARMA Modeling of FDTD Time Sequences

for Microwave Resonant Structures

Arnab K. Shaw and Krishna Naishadham

Department of Electrical Engineering
Wright State University, Dayton, OH 45435

Abstract: The finite-difference time-domain (FDTD)
method requires computation of very long time se-
quences (TS) to accurately characterize the slowly de-
caying transient tail of resonant and/or electrically
large structures. Therefore, it becomes critical to in-
vestigate methods of reducing the computational time
for such objects. In this paper, we present a new sig-
nal processing algorithm, which uses significantly lower
model orders than those employed in existing Prony-
based algorithms, to extrapolate the late-time signa-
ture accurately from the moderately early-time TS.
The robustness and accuracy of the new method are
illustrated by the FDTD simulation and experimental
corroboration of a high-Q microstrip filter, an example
of a resonant structure.

1. Introduction

The FDTD technique is well-established as a ver-
satile analytical tool for solving EM problems associ-
ated with characterizing microwave structures. How-
ever, it is also recognized that for accurate characteri-
zation of the underlying modes of even relatively simple
structures, very long time-sequences need to be com-
puted. The problem becomes particularly acute for
high-@ structures with energy-storage features such as
stubs and cavities, which tend to manifest relatively
long decay times requiring thousands of time steps. In
order to avoid such long computation times and associ-
ated cost, several researchers have recently attempted
to model the TS from short ‘early’ data records and
then use the estimated (or trained) ‘model’ to predict
the remainder of the TS by extrapolation {cf. [1], [2]).

It has been argued that the FD'TD-TS can be mod-
eled as the Impulse Response (IR) of an Auto Regres-
sive Moving Average (ARMA) transfer function. How-
ever, it is known that determination of ARMA parame-
ters by IR fitting is a non-linear optimization problem.
In most of the current EM literature Prony’s method
and its modifications appear to play a dominant role.

This may be due to the fact that Prony’s method con-
verts the essentially non-linear modeling problem into
a relatively simple linear estimation problem. How-
ever, Prony’s approach suffers from two drawbacks.
First, it tends to overmodel the system. In particu-
lar, when there are deep nulls in the frequency domain,
significantly high model orders are needed to achieve a
good fit. Secondly, overmodeling may lead to instabil-
ity. In order to circumvent these problems, we propose
to minimize the true non-linear error criterion using
an efficient iterative method for signal extrapolation,
which significantly improves IR, fitting with relatively
few ARMA model parameters (i.e., low model orders).

In the proposed approach, the model parameters
are estimated by minimizing the true fitting error (FE)
criterion which is non-linear; hence, very good fit to
the FDTD time-sequence and accurate frequency do-
main response can be achieved even with significantly
low model orders. In contrast, the Prony-based lin-
ear predictor-type methods used in most EM literature
minimize a simpler, but entirely different, ‘equation er-
ror’ (EE) criterion that only approximates the true FE
criterion. As a result, significantly high model orders
are needed in these methods to achieve good approxi-
mation in the frequency-domain [1], [2].

2. Problem Statement

A general complex exponential model of the FDTD
signal can be defined as the impulse response of a linear
time-invariant system,

p
h(n)éZake("k + jwk)n+j¢k, n=0,1,2,... (1)
k=1

where oy, o}, wi and ¢ denote the real amplitude,
damping factor, frequency and initial phase, respec-
tively, of the k-th exponential. However, the time-
sequences generated by FDTD simulations are always
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real and consequently, they can be represented as
}1

Z ape’* cos(wrn + i),

k=1
Note that p has been assumed to be even without any
loss of generality. Taking z-transform of h(n) in (1),

H(z) = Z

A : .
where, Ay=aze!?*, denotes complex amplitudes and

h(n) 2 n=01,2.... (2)

dkz‘“l) (3)

dkéak + jwg. After summation of the p terms in the
right hand side, we obtain

ao+arzt+ - +ap_127 P A N(z) ()
L4+biz=t 4 -+ bpz? ~ D(z)’
where the coefficient of 2° term in denominator has
been assumed to be unity. Note that all coefficients in
this transfer function (TF) are real because all Ay and

dy occur in conjugate pairs. It may also be noted that
a general ARMA TF is given by

a0+a1z_1+--'+aq_1z"(q—1)+aqz_q 5
T4+biz7t 4o bpoyz= =D 4 2P’ (5)
where p and ¢ denote the number of poles and zeros,
respectively, and can have any arbitrary integer values.
With p = ¢+ 1, the special ARMA TF in (4) is known
as the ‘strictly proper’ case. Another important special
case is the purely Auto Regressive (AR) TF with ¢ =
0. The transfer function H(z) in (5) can be written
equivalently in terms of its impulse response as

H(z) = hO0) + A1)z 4+ b)) 4o ()
Stacking the first N ‘significant’ samples of H(z),

h £ [h(0) h(1) AN — 1) (7)

Next, let the vector containing the N samples of the
measured FDTD-TS be denoted as

A T
hg = [ha(0) ha(1) ha(N =1)]". (8)
According to Steiglitz [3], given a desired impulse re-
sponse hg, ‘the ideal problem’ of optimal estimation

of the parameters a; and b; can be represented by the
following FE minimization

a3 [0~ (540"

H(z) =

H(z) =

min|lel?> £
a,b

£ min|fhq - b’ 9)
, 1, ¢=0
5G) = { 0, i£0
é [ao ay aq]T
b £ I b bp]" . (10)

The notation, N()L5(1) denotes the i-th output
D(z)

when a ‘system’ represented by ]1\)’4(% is driven by the
input 6(¢). 'This problem is known to be non-linear
in b and standard non-linear optimization algorithms
have been suggested [4], [5].

3. Signal Processing Approach

Recently, the joint FE optimization problem de-
fined in (9) has been theoretically decoupled into two
subproblems of reduced computational complexities by
Shaw [6]. The approach, known as decoupled Optimal
Method (OM), is applicable to identification of ratio-
nal models with arbitrary numbers of poles (p) and
zeros (¢). It has been shown that the non-linear de-
nominator subproblem possesses a weighted-quadratic
structure which can be utilized to formulate an efficient
tterative minimization algorithm. It has also been es-
tablished in [6] that the decoupled sub-criteria of OM
possess global optimality properties. A brief outline of
OM follows.

The non-linear denominator criterion of OM has
the following form:

min||leonm(a, b)”z
a,b

il

min [e(b)]

£ min||B(BTB)~'B hy|)
= rrEthfB(BTB)‘IBThdHZ
= nri)ianHg(BTB)‘lﬂzb
(11)
where
(D41 Doya by 0 ]
by bgyr bp—1
Py RN,
1 p—1
B 2 0 1
0 0 by
1
0 0 by
0 0 0 1

and the (N — ¢ — 1) x (p+ 1) matrix Hj is formed as,
Hy(i,5) = ha(i—j+q+1). Once b is estimated by op-
timizing (11), the numerator is found by the following
pseudo-inverse solution

a = Hih, (12)

Note that, in deriving (11) and (12), no linearization
had been used in [6].
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Figure 1: The raw FDTD TS of a microstrip low-pass
filter.

The criterion in (11) is non-linear in b, but it pos-
sesses a weighted-quadratic structure where the weight
matrix itself depends on the unknown parameters in
b. An iterative minimization scheme is given in [6],
where the initial estimate of b is found by setting the
‘prefilter’ matrix (BTB)~! = I(N-g-1)in (11), i.e, by
optimizing,

mbianHg”sz. (13)

Interestingly, this criterion is identical to the so-
called ‘covariance method’ of linear prediction used in
all Prony-based methods reported in EM literature.
Clearly, since the Prony’s estimator is used as the start-
ing point of decoupled OM, it is fair to argue that OM
would always outperform Prony-based methods by fur-
ther minimizing the true model fitting error. This will
be demonstrated by the simulation example in the next
section.

4. Simulation Example

In this section, the performance of the optimal
method is compared with that of a standard Prony-
based algorithm using the FDTD-TS shown in Fig. 1,
sampled at the output port of a microstrip two-port
low-pass filter [7]. Both ports have a characteristic
impedance of 50 ohms. The first 500 time-samples
may contain transients, and are discarded. The sam-
ples between 501 to 1,500 are used for estimating the
model, and the rest are used for prediction compari-
son. These 1,000 modeling samples are down-sampled
(decimated) by a factor of 10:1 to 100 samples. The
decimated FDTD-computed sequence is shown in Fig.
2, and is used next as the reference for comparison with
the modeled sequence.

response
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Figure 2: Decimated FDTD TS of the filter.

Fig. 3 shows the comparison for an ARMA(6,5)
model (6-th order OM), and Fig. 4 compares the stan-
dard Prony’s (also 6-th order) method used in [1]. In
each case, the solid line corresponds to the decimated
reference set, and the dashed line, to the model. The
6-th order model thus established has been then used
to extrapolate the TS from 1,500 to 7,000 (i.e., late-
time data is extrapolated from an early-time model).
Excellent comparison with the reference solution in
Fig. 1 has been observed for the entire TS of 7,000
time steps. Prediction performance in the frequency-
domain insertion loss (S31) of the filter is shown in
Fig. 5. The solid line corresponds to the measure-
ments reported in [7], the dashed line to 6-th order
OM, and the dot-dash line to 6-th order Prony. The
filter is a notch low-pass filter, designed with a notch
frequency of 7.5 GHz and attenuation of -40 dB. It is
observed from Fig. 5 that OM outperforms Prony’s by
a significant margin, and corroborates excellently with
measurements. In order to obtain a corroboration to
the same accuracy, the Prony’s model order has to be
increased to 40 [1]. Therefore, OM is computation-
ally much more efficient than Prony’s in FDTD data
processing. For higher-Q and electrically large struc-
tures, the computational savings will be much higher,
because higher-order Prony’s models can lead to severe
instability. The return loss, Si1, also computed from
the model, agrees very well with measurements. These
results are omitted for brevity.

5. Conclusions

A classical ARMA identification technique has
been used to model FDTD time sequences for high-
Q) structures. The major focus of the paper has been
to demonstrate that, given the desired time-sample re-
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Figure 3: Comparison of the ARMA(6,5) model fit
(dashed line) with the reference solution
(solid line).

sponse, it is possible to obtain accurate match in time
and frequency domains with relatively lower model or-
ders than hitherto reported in EM literature. It is
shown that the multidimensional non-linear problem
can be decoupled into two separate problems with
reduced dimensionalities. The inherent mathemati-
cal structure of the non-linear denominator estimation
problem is utilized in an efficient iterative computa-
tional algorithm. The new method has been shown to
be very effective in the simulation of a microstrip filter.
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